
Sovereign Cloud Stack:
One platform – standardized, built and operated by many.

How we drive standardization & certification.

Manuela Urban
Kurt Garloff scs@osb-alliance.com

09.03.2023

mailto:scs@osb-alliance.com

Vision

SCS combines the best of Cloud Computing in one

unified standard. SCS is built, backed, and operated
by an active open-source community worldwide.
Together we put users in control of their data by
enabling cloud operators through a decentralized
and federated cloud stack- leveraging true digital
sovereignty to foster trust in clouds.

Sovereign Cloud Stack:
One platform - standardized, built and operated by many.

Sovereign Cloud Stack Deliverables

2Modular Open Source
Reference Implementation

1
Certifiable Standards

3
Operational Knowledge

Mission

1. Simplify operating modern cloud infrastructure

2. Enable federation and x-operator scaling

3. Create and adopt certifiable standards

4. Create transparency

5. Enable choice for users

SCS Project – funded by

● 2020-21 validated by SPRIND

● 2021-24 funded by BMWK with EUR 14.9 million

● 9 SCS team members @OSBA:
Alexander Diab, Kurt Garloff, Bianca Hollery-Pfister, Eduard Itrich, Felix Kronlage-
Dammers, Dirk Loßack, Jan Schoone, Manuela Urban, Max Wolfs

● 19 Public tenders to be awarded for relevant SW-development service contracts, see
https://scs.community/tenders/

Active & growing community (companies)

Open, federated infrastructure for industry, science, administration

Upstream first!

SCS: Technical foundation for Gaia-X

SCS: Realize Digital Sovereignty

Legal Compliance (GDPR ...)

Choice / Switching / Interoperability

Ability to shape technology

Competence (esp. Operations)
https://rdcu.be/cWdBJ

https://rdcu.be/cWdBJ

SCS Certification

1: Legal Compliance

2: Choice, Interoperability,
Portability

3: Technology transparency, ability to shape

4: Operational Transparency and Competence

Dimensions of Digital Sovereignty SCS Certification Levels

1: ENISA / Gaia-X labels / GDPR (no extra SCS-Cert)

2: “SCS-Compatible” – Technical Compatibility,
interoperable (Conformance tests pass: CNCF, OIF,
SCS)

3: “SCS-Open” – SBOM for functional stack available,
fully open (4x open acc. OpenInfra)

4: “SCS-Sovereign” – Ops/IAM Stacks also fully
open, transparency w.r.t monitoring, incidents, …
Contribution to “Open Operation” (5x Open)

OTC, OVH
IONOS cloud
Delos (MSFT)

TSI/GCP cloud

VMware vCloud
 & Tanzu

AzureStack

AWS/Azure/GCP
AliBaba

0: None

StackHPC
Cloud&Heat

StackIT
Cleura

...

Betacloud
PlusCloudOpen

Wavestack
…

-

?

?

Open Operations

https://openoperations.org

SCS-3
(future)

SCS

SCS-1
(R1+)

SCS Ref. Architecture (current status)

D
ar

k
sq

ua
re

s:

fu
tu

re

SCS: Achievements

● Public Cloud offerings built with SCS reference implementation:

● BSI C5-Certification of pluscloud open

● Release 3 (2022-09-21), Release 4 (2023-03-22)

● Infrastructure layer for created

● In evaluation or built up in various organizations (industry, administration, science)

● Building block of the Deutsche Verwaltungscloud-Strategie of the

● Proof of Concept with

● Active & growing community

SCS Standards

SCS: Why standardization?

● Real choice (2nd dimension DigiSov) requires lock-in-less choice

– Technically fully compatible providers available

– Self-Hosting fully compatible infrastructure must be realistic

● „Virtual Hyperscaler“ vision

– Users can leverage many clouds as one

– Requires common feature set, common APIs, common system behavior
(baseline)

– Requires user federation

● Enables joint development, joint operational practices

SCS: Standardization process

● Preference to leverage/reference/contribute to existing upstream standards

● Process: Described in gh:SCS/standards/Standards/SCS-0001-v1

– Lifecycle: Pre-merge Draft Merged Draft Stabilized (or Rejection) Deprecation (all via github PRs)→ → →
– Standards are versioned

– Discussed in SCS technical teams, reach out to broader communities when useful, get operator feedback

– Standards should come with compliance check tools

● Driven by interoperability needs from users (DevOps teams that operate workloads on SCS infra)

– Internal needs: Container layer creates InterOp requirements to Infra layer, platform services to container layer

● Standards are extensible

– Common baseline, growing over time, overdelivery allowed

● IaaS and KaaS layers currently (both also requiring IAM Federation), Platform services in the future

● Current focus on SCS-compatible, openness checks (SBOM) and open operations standards in the future

https://github.com/SovereignCloudStack/standards/blob/main/Standards/scs-0001-v1-sovereign-cloud-standards.md

SCS certification testing framework

● Defined in
gh:SCS/standards/Standards/scs-0003-v1

● YAML file, defining a version X of certification
requirements valid in a timespan for a layer
(currently iaas or kaas), listing all needed
(mandatory and optional) standards (SCS and
upstream) along with compliance tests

● Test tool
gh:SCS/standards/Tests/scs-compliance-check.py
that can be run (with normal customer privileges!)
against IaaS or KaaS under test

● Available as docker container
● Continuous compliance monitoring (github action)

https://github.com/SovereignCloudStack/standards/blob/main/Standards/scs-0003-v1-sovereign-cloud-standards-yaml.md
https://github.com/SovereignCloudStack/standards/blob/main/Tests/scs-compatible.yaml
https://github.com/SovereignCloudStack/standards/blob/main/Tests/scs-compliance-check.py

SCS compatible on IaaS layer (1)

What Why Status Tests References

Systematic
Flavor-naming

Allow IaC to work across
clouds (incl. k8s-capi-
provider)

V1 done (mandatory)
V2 draft (mandatory?)

Done
Done

flavor-naming
scs-0100-v2

Mandatory flavors Allow IaC to work across
clouds (incl. k8s-capi-
provider)

V1 done (mandatory)
V2 draft (mandatory?)
V3 ADR for SSD flavors

Done
Done
Implicit

flavor-naming
scs-0100-v2
scs-0110-v1

Flavor
discoverability

IaC: Discover properties
beyond vCPU/RAM/ Disk

TBD (extend and
standardize extra_specs)

TBD standards/#74

Image metadata Transparency on image
properties (e.g. login,
build date) and update
promises

V1 done (mandatory) Done Image-Properties

R

R

R

https://github.com/SovereignCloudStack/standards/blob/main/Drafts/flavor-naming.md
https://github.com/SovereignCloudStack/standards/blob/main/Standards/scs-0100-v2-flavor-naming.md
https://github.com/SovereignCloudStack/standards/blob/main/Drafts/flavor-naming.md
https://github.com/SovereignCloudStack/standards/blob/main/Standards/scs-0100-v2-flavor-naming.md
https://github.com/SovereignCloudStack/standards/blob/main/Decisions/scs-0110-v1-ssd-flavors.md
https://github.com/SovereignCloudStack/standards/issues/74
https://github.com/SovereignCloudStack/standards/blob/main/Drafts/Image-Properties-Spec.md

SCS compatible on IaaS layer (2)

What Why Status Tests References

Entropy for VMs Workloads (encryption)
expect there to be
enough ...

Draft TBD standards/#210

IPv4 networking:
Local networks
FIPs for public net

Common source of
divergence

Idea issues/#167

IPv6 networking:
Local networks
Public Prov. network

ditto Idea issues/#166

Metadata source
(w/ user-data,
 vendor-data)

Required for
customization of VMs

Idea R

R

R

https://github.com/SovereignCloudStack/standards/pull/210
https://github.com/SovereignCloudStack/issues/issues/167
https://github.com/SovereignCloudStack/issues/issues/166

SCS compatible on IaaS layer (3)

What Why Status Tests References

DNS and
NTP for VMs

Working DNS without
outgoing internet access,
correct system time

Draft

Draft

TBD

TBD

issues/#229
issues/#230
issues/#231

Domain admin role Allow project creation,
user management as
self-service (resellers)

Idea – various
workarounds (policies,
APIs exist), upstream
disucssions started

TBD issues/#184

Identity federation
via OIDC

Federate users from
federated clouds

Blog post (device auth
grant flow needed)

TBD Blog

OpenStack
powered Compute
2022.11

Baseline Done (Upstream) Refstack in
Ref.Impl. but
not generic

Guidelines

r

R

https://github.com/SovereignCloudStack/issues/issues/229
https://github.com/SovereignCloudStack/issues/issues/230
https://github.com/SovereignCloudStack/issues/issues/231
https://github.com/SovereignCloudStack/issues/issues/184
https://scs.community/de/2023/01/05/sig-iam-openstack-cli-with-federation/
https://opendev.org/openinfra/interop/src/branch/master/guidelines/2022.11.json

SCS compatible on IaaS layer (4)

What Why Status Tests References

L3 loadbalancer
(OVN)

Needed for good
externalTrafficPolicy:
Local support

WIP TBD issues/#251

Definition of AZ Availability expectations
when spreading over
AZs

Idea: Meaningful level of
independence (power,
net, fire, cooling, …)

TBD

Definition of Region What is shared? Idea: Share identities,
replicate images

TBD

r

r

https://github.com/SovereignCloudStack/issues/issues/251

SCS compatible on KaaS layer (1)

What Why Status Tests References

CNCF conformance
tests

Baseline Done sonobuoy Test driver

Offered K8s version
recency

Security baseline ADR Done TBD SCS-0210-v1

K8s version support
period

Avoid enforcing
unneeded churn

Idea: (Support minor
version at least as long
upstream does)

TBD

Default storage
class properties

Reasonable default
storage always available

ADR Done TBD SCS-0211-v1

Additional storage
classes (IOPS,
RWX)

RWX needed by some
workloads; IOPS to allow
for storage performance

WIP TBD issues/#214

Anti-affinity (soft for
workers)

Availability expectations
from deployed workloads

WIP TBD issues/#226

R

R

R

R

R

https://github.com/SovereignCloudStack/k8s-cluster-api-provider/blob/main/terraform/files/bin/sonobuoy.sh
https://github.com/SovereignCloudStack/standards/blob/main/Decisions/scs-0210-v1-k8s-new-version-policy.md
https://github.com/SovereignCloudStack/standards/blob/main/Standards/scs-0211-v1-kaas-default-storage-class.md
https://github.com/SovereignCloudStack/issues/issues/214
https://github.com/SovereignCloudStack/issues/issues/226

SCS compatible on KaaS layer (2)

What Why Status Tests References

CNI with network
policies

Network controls needed
for security

TBW TBD issues/#211

Ingress / Gateway
service (opt-in) with
client IPs

Allow customers to do
access control

WIP TBD

Identity federation
via OIDC

Allow to reuse identities
from underlying cloud or
external IdP

Research TBD issues/#194

Machine identities The controlling infra
knows who you are …
Avoid complexity.

Idea TBD issues/#163

R

R

https://github.com/SovereignCloudStack/issues/issues/211
https://github.com/SovereignCloudStack/issues/issues/194
https://github.com/SovereignCloudStack/issues/issues/163

SCS compatible on KaaS layer (3)

What Why Status Tests References

Control plane
backup/
maintenance

Avoid losing cluster
status

TBW TBD k8s-capi/#258

Kube API access
controls

Customer requests WIP TBD k8s-capi/#246

Metrics service (opt-
out)

Standardized service
needs to be available

WIP TBD issues/#224

Container registry
(opt-in)

Very popular demand WIP TBD issues/#263

r

r

r

R

https://github.com/SovereignCloudStack/k8s-cluster-api-provider/issues/258
https://github.com/SovereignCloudStack/k8s-cluster-api-provider/issues/246
https://github.com/SovereignCloudStack/issues/issues/224
https://github.com/SovereignCloudStack/issues/issues/263

SCS compatible on KaaS layer (4)

What Why Status Tests References

Cluster
management API

Unified cluster lifecycle
management (capi /
Gardener style)

Research TBD issues/#181

Gitops controller for
Cluster Mmgt

Vision Research TBD

https://github.com/SovereignCloudStack/issues/issues/181

SCS Standardization: Present and Future

● 2022 focus was on reference implementation, 2023 focus is on standards
– Tender package finally awarded (waiting for release of funds)

● SCS standards are meant to be implementable in more than one way
● Most of the above mentioned standards are already implemented (R) or partially implemented

(r) in the Ref. Impl. - normally a prerequisite for finalizing a standard
● Not every above mentioned discussion necessarily ends up being a mandatory standard
● The more operators join the more useful the standards
● Standardization just started – largest part ahead of us
● Join us if you agree with the fundamental approach

– Team meets, github (standards and issue repos: issues, PRs)

https://scs.community/contribute/

Donnerstag, 11.05.2023
17.00 – 18.00 Uhr

SCS – Modular Reference Implementation
& Open Operations

You are invited!

https://scs.community/

//

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

