
Automated Security Testing of
deployed infrastructure

Presenting our work and knowledge from SCS

@ ALASCA Summit 2024

Dominik Pataky, Kurt Garloff

Overview

1. Intro to the topic of pentesting

2. Background and context of the project

3. Implementation in SCS

◦ Infrastructure layer

◦ Container layer

4. Review and methodology transfer

Pentesting?

• = Penetration testing

• Method of testing for security weaknesses and vulnerabilities in IT

• Experts run offensive tests in specified scope

◦ Beware of legal issues in DE (Hackerparagraph §202c StGB) and

other countries

• Also part of “red teaming” (attack team)

• Complements the theoretical and design work by looking for issues

with the implementation

Pentesting? (2)

• Should be done regularly ◦ Own interest to keep everything secure

• Some people are required to test

◦ Compliance reasons

◦ Mainly by contracting a third party

◦ Highly skilled and expensive engineers required

• Can partially be automated!

Pentesting in SCS

• Scope and lawful compliance can be worked on by many orgs

• Automated pentesting according to SCS Security Standards is

equivalent to Compliance Test Suite for Platform Standards

• Continuous integration and CI testing has enabled a new level a

quality assurance and development velocity

• Do the same for Security: Secure SDLC, shift left (automated tests in

stage of development)

Context for SCS VP09c

• VP09c name of the SCS tender for “penetration testing”. Two steps:

1. Run pentests against SCS infra and find problems to be fixed

2. Automate these tests as much as possible

• Automation allows re-running and replicability

◦ Important, if tests shall run at multiple CSP sites

Preliminary work: pentesting IaaS

• Pentesting experts installed IaaS layer testbed instances

• Used environment for real pentest

◦ Results substitutional for SCS instances at CSP sites

◦ Findings were reported to upstream and fixed

• Final report available to SCS for further reference

SCS Best Practices in Security (1)

• SCS also empowers open discussions around security topics

◦ Also driven by VP09c

• Leads to SCS Best Practices, standards, guides

• Ecosystem exchange with patches and docs

SCS Best Practices in Security (2)

• Reporting potential vulnerabilities

◦ Use Security Advisories in Security Tab in github SCS issues repo -

> allows for restricting audience prior to publication

▪ Prevent confusion by false positives

▪ Avoid helping black hat hackers from using insight to hack our

CSPs

◦ Separate from our security contact mailing list reporting process

◦ Separate from public advisories (SCS Blog)

Implementation in SCS

• The testbed pentest provided the ground work for implementation

of security tooling

• Pentesters gained experience, insight on where to look

◦ SCS = stack of open source components

◦ Each component has its specific attack surface

Implementation in SCS: IaaS

• For IaaS, deployed infra is scanned regularly

• Build server pipeline as reference implementation

• Docs @ https://docs.scs.community/docs/category/pentesting-iaas

(https://docs.scs.community/docs/category/pentesting-iaas)

https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas

Implementation in SCS: IaaS tools

• Pipeline: Zuul

• Basic scanning: Naabu, httpx, Nuclei

• Vulnerability scan: ZAP, OpenVAS

• Report management: DefectDojo

Implementation in SCS: KaaS

• Container layer, Kubernetes

• Two modes:

◦ ad-hoc from Zuul (unauthenticated, “black box testing”)

◦ continuously as Operator (authenticated test from inside the

cluster)

• Docs @ https://docs.scs.community/docs/category/pentesting-kaas

(https://docs.scs.community/docs/category/pentesting-kaas)

https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas

Implementation in SCS: KaaS tools

• Focus on Trivy as scanning tool

• Widely accepted security utility in Kubernetes environments

◦ k8s-native and tailored to common weaknesses in Kubernetes

• Export to DefectDojo

◦ Surprise: No native export to DD or S3

◦ Self-built export cronjob

Review of methodology

• Chosen tools fit SCS components

• BUT: reference implementation! Tools are interchangable

• More important than tool choice is a good methodology

• Creating the pipeline of tools proved very helpful

◦ especially in context of automation (infra-as-code, IaC)

Outlook and adaptability

• Methodology can be adapted to ALASCA projects

• YAOOK

◦ Trivy for all things k8s (creates a set of reports)

◦ IaaS scanner instances spawned automatically

• YAKE?

Conclusion and questions

• Summary

• Questions from audience?

